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NUMERICAL EVALUATION OF CAUCHY PRINCIPAL 
VALUE INTEGRALS WITH SINGULAR INTEGRANDS 

PHILIP RABINOWITZ 

ABSTRACT. Convergence results are proved for sequences of interpolatory inte- 
gration rules for Cauchy principal value integrals of the form 

fk(x)(f(x)/(x - A)) dx, -1 <)A< 1, 

when f(x) is singular at a point A 7 i and the singularity is ignored or 
avoided. 

1. INTRODUCTION 

In this paper we shall be concerned with the numerical evaluation of Cauchy 
principal value (CPV) integrals of the form 

(1) I(kf; A):= k(x) f(X) dx -1 <i< 1, 

where k and f are such that I(kf; A) exists but where f is unbounded in 
the neighborhood of a point 4 E J [-1, 1] with g i. The purpose of this 
paper is to determine those cases in which the numerical method is decoupled 
with respect to the two singular points 4 and A, and those in which there is an 
influence of one singularity on the other. 

A particular choice of k occurs when k = v, where v E A, the set of all 
admissible weight functions, i.e., v > 0 on J and 0 < llv Ill < oo. A special 
v E A for which we will give most of our specific results is the generalized 
smooth Jacobi weight function, v E GSJ, defin,ed by 

p+l 

(2) v(x) = TV(x) J7 Ix - tlj, Yj >-, j= 0, ... , p + 

j=O 

where -I = to < t <... < tp1 = 1, p > 0 and qi > 0, It E DT(J). The set 
of functions DT(I) for any finite interval I of length l(I) is defined by 

DTI g: _ jI(I) t) dt < _ A 
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where the modulus of continuity w1(g; t) is given by 

w1)(g; t) := sup g(xl) - g(X2)1. 
I1 -X21 <t 
XI ,x2EI 

The numerical integration rules investigated are principally the interpolatory 
rules based on sets of points Xn := {Xin: i = 1, ..., n; xin , Xjn if i$ j}, 
possibly augmented by the point A. In many cases Xn will be the set of Gauss, 
Radau or Lobatto points with respect to some w E A, i.e., the zeros of 

(3) (1 - X)(1 + x)sPn-rs(X; (1 - X)(1 +x)sw), r, s E {0, 1}, 

where {pm(x; v) = AmXm + ; Am > 0} is the sequence of orthonormal 
polynomials with respect to v. When k = v, it is usual to choose w = v. 

Interpolatory rules for CPV integrals have been studied extensively by many 
authors, both from theoretical and practical points of view [1,3,6,9]. In ?2 
we shall give the main convergence results for these rules. We shall also give 
results on the numerical integration of ordinary integrals where the integrand 
is an improperly integrable function belonging to the class Md(4; k) where 
-1 < < 1 . As in [10], 

Md(Q; k) := {f: f E C(Q, 1], lf(x)l < F(x) in J, F = 0 in [-1, 4], 
(4) F is nonnegative, continuous and nondecreasing 

in (4, 1] and kF EL1(J)}. 
For such functions f E Md(4; k), various results are known about the con- 
vergence to the (improper) integral of f of numerical integration rules which 
either ignore or avoid the singularity at 4. 

In ?3 we shall'study the convergence of interpolatory rules for I(kf; A) based 
on Xn when f E Md(4; k). These rules have a very favorable convergence be- 
havior for continuous functions for certain choices of Xn and k, in particular 
when k = w E GSJ. Surprisingly, in the singular situation there are problems 
when w E GSJ and the xin are zeros of (3) in the case when 4 = -1 , and only 
then. This is in contrast to the usual experience in numerical integration in the 
presence of a singularity where there is much better convergence behavior when 
4 is an endpoint than when 4 is an interior point; see e.g. [10]. 

In ?4 we shall investigate the convergence of more general integration rules 
for I(kf; A) when f E Md( ; k), a special case of which are the interpolatory 
rules based on the set Xn U {A} with A 4 $ xin, i = 1, ..., n. For f E C, 
the convergence behavior of these interpolatory rules is much more problematic 
than in the case of rules based only on Xn . However, the complications imposed 
by the singularity in f do not introduce additional difficulties. In fact, both 
in the case discussed in ?3 with 4 :$ -1 and in the case discussed in ?4, the 
influences of the singularities at 4 and at A are decoupled. Only when I = -1 
is there an interaction between the two singularities. 

2. PRELIMINARIES 

Let f E Md(Q; k) and let A E (4, 1), since otherwise I(kf; A) is not a 
CPV integral. We define N(A) :=[, - 3, A + 3], where we restrict 3 so that 
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N, (A) c (4, 1). It then follows by an argument similar to one involving 
f E C(J) that if k, f E DT(N,(1)), then I(kf; A) exists (see ?3). Assume 
now that we are given an arbitrary set Xn and a set of weights win(k), 
i=1, ..., n, in the interpolatory product integration rule (IPIR) 

(5) I(kg) f k(x)g(x) dx = In(kg) + En(g), 

where 
n 

(6) In (kg) Win (k)g(Xin ) 
i=l1 

and where En(g) = 0 whenever g E Pn_I, the set of polynomials of degree 
< n - I. If we define win(k; A) by 

w. (k) - I(kP~; 1A)/P(x 
(7) w j (k; i ):= Win (k- kn )Pn (Xin ) 

in 

where 
n 

(8) Pn(x) = l(x -Xin) 
i=l1 

and define 
n 

g9) In(kg; A) =Win(k; A)9(Xin), 
i=l 

then 

(10) I(kg; A) = In(kg; A) + En(g; A) 

and En(g; )= 0 whenever g E Pnl. The win(k; A) can be computed in a 
stable manner once I(k; A) is known [6]. 

We have the following estimates for En(g; A) in terms of En(g) defined by 
En(g) := I - tn(g)H, where tn(g; x) E Pn is the polynomial of best approxi- 
mation to g. 

If k E DT(N,(A)) n LI (J) and g E DT(N,,()) n C(J), then 

(1 ) En (9; A) = O(A(Xn ) log npn_ 1 (9)), 

where A(Xj) is the Lebesgue constant of Xn with respect to Lagrange interpo- 
lation (cf. [1, (2.12)]), and furthermore 

(12) En(91A)=? E1Win(k;A)1ogn En l(g) 

If k=weGSJ, xin arethezerosof (3) and A tj, j= 1,...,p, aswe 
shall always assume hereafter, then Z7=1 lwin(k; A)l = O(log n) [1], so that 

(13) En (g; A) = O(log nEn-1(g)). 
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If k E DT(N6()) n L (J), where 3 is such that tj 0 N,(A), j = 1, ...p 
and satisfies 

(14) klogiki E LI(J), kw-i/2(1-x 2)- /4 E L (J) 

for some w E GSJ, and if xin are the zeros of (3), then (13) holds [9]. In what 
follows, we shall always assume that k, Xn and f are such that En(f; A) = 
o(l) . 

If we replace f by the polynomial interpolating f at the points Xn U {A} 
with A 54 xin, i = 1, ..., n, then we get the approximation 

(15) I(kf; A) In+1 (kf; A) + En+1 (f; A) 

where 

(16) In+l(kf; A) >win (k) - _ + 

and En+I (f; A) = 0 if f E Pn except that if k = w E A and xin are the zeros 
of (3), then En+1 (f; A) = 0 if f E P2n____ . Since it can be shown that 

n 
(17) In+I(kf; A) Win(k)fA(Xin) + fo()I(k; A) 

i=l1 

and 

(18) I(kf; A) = I(kfj) + f(A)I(k; A), 

where 

( f (x) -f ())AX- i)' ,x + i, 
(19) fh(x):= I f(A) x =2, fA(A) exists, 

O, otherwise, 

it follows that En+I(f; A) = o(l) if the IPIR In(kfA) converges to I(kfi). 
We see from (17) and' (18) that one can use any product integration rule 

(PIR) to approximate (18) and not necessarily an IPIR, i.e., the weights win (k) 
in (17) may be replaced by the weights Tin (k) in the arbitrary PIR 

n 
(20) 7n(kg) Tin (k) (Xin) 

i=l1 

and the convergence in the CPV case for f will follow from the convergence 
of (20) for I . For future reference, we define the companion rule to (6) by 

n 
(21) | Inj|(kg) := 1 win(k)19 (Xin)' 

i=l1 

The convergence of IPIR's for (bounded) Riemann-integrable functions has 
been studied by several authors, and their results are summarized in the follow- 
ing two theorems [11]. 
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Theorem A. Let w E A and xin be the zeros of (3). Then 

(22) In(kg) -*I (kg) and IIn I (kg) -* I(IkIg) as n -* x 

for all g E R[J], the set of all Riemann-integrable functions on J, if k 2w I 
E 

L1( J) 

Theorem B. Let w E GSJ and xin be the zeros of 

(1 -x)r(1 +x)sPn-r-s(X; W), r, sE {O, 1}; 

then (22) holds for all g E R[ J] if, for some p > 1, 

(a) k E Lp, 
(b) (1 - x)-r+14(1 + x)-s+l/4wI/2 EL 

(c) k(1 -X)r- (l + x)s1/4w 1/2 E 

In [ 12], there is a result analogous to ( 11) for IPIR's, namely, that if g E C(J) 
and keL1(J), then 

(23) EEn(kg) = O(A(Xn)EPn1(g)). 

For the convergence of generalized piecewise polynomial PIR's defined in 
[10] we have that In(kg) -* I(kg) as n -* x for all g E PC[J], the set of 
piecewise continuous functions in J. 

We now give some results on ignoring and avoiding the singularity in inte- 
grating functions in Md (4; k) . Our first result is basic to future developments. 

Theorem C [10]. Let 4 E [-1, 1) and f e Md(4; k). Assume that In(kg) 
I(kg) for all g E PC[J]. Then a necessary and sufficient condition that 

In(kf) -* I(kf) is that, given c > 0 and q E (4, 1), there exists ,B E (E, ) 
such that for all n sufficiently large 

(24) EuTin (k)f (Xin) < e- 
Xin<fl 

The corollaries in [10] are also of interest. In the following two corollaries, 
we assume that -I := XOn < xI n . Similar results exist for the case xIn = -1 . 

Corollary C.1. Assume that In(kg) -* I(kg) for all g E PC[J] and suppose 
there exists a positive integer N, a point B E (-1, 1 ] and a positive constant c 
such that 

rXin 

(25) TIUn(k)l < cf_ k(x)Idx 

for all n > N and all i such that -1 <xin <B. Then In(kf) -* I(kf) for all 
f E Md(-l; k). 

Corollary C.2. Let 4 E (-1, 1) and assume that In(kg) -* I(kg) for all g E 
PC[J]. Suppose there exists a point B E (40, 1] and a positive constant c such 
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that (25) holds for all n sufficiently large and all i such that xKf < xin < B. 
Then 74(kf) -* I(kf) for all f E Md(4; k). Consequently, I7(kf) - * I(kf) 
if and only if wKnff(XKnf) = o(l). 

Here, the index K is such that XK 1, n < 4 < XKn I Xo = lim supn-,O XKn and 

n(kf) I= 7(kf) - TKnf(XKn) , so that the approximation to I(kf) is given by 
Zi=K+1 WI f(xin), a case of avoiding the singularity, in contrast to Corollary 
C. 1 where we ignore the singularity. 

A consequence of these corollaries is that if w E GSJ and we consider 
the Gauss rule Gnf for I(wf), then Gnf -* I(wf) for all f E Md(l; W) 

GQf -* I(wf) for all f E Md(4; w). This results from the properties of the 

Gauss points and weights with respect to w as given, say, in [5]. Furthermore, 
if w is the Jacobi weight function 

(26) w(x) := (I -X)a(l + x)4, a,B >-1 

then, if f E Md(Q; w) and 4 = cosirp/q, p, q integers, then Gnf ` I(wf), 
while if 4 = cos rz, T irrational, and 

f(x) {(x-4)-Y x>~, O<y< 1, 

then for almost all T, Gnf -* I(wf) if y < I and for all T, Gnf I(wf) if 

y > 1 [8, 15]. Analogous results hold for Radau and Lobatto rules with respect 
to w [7]. 

A similar situation occurs in piecewise polynomial PIR's in that we ignore 

the singularity when 4 = -1 and avoid it when 4 > -1 [ 10]. 

3. CONVERGENCE RESULTS. I 

We first remark that if f E Md(Q; k) and kf E DT(N6()), then I(kf; A) 
exists, since we can write 

I(kf; A) = f k(x) dx + J k(x) f'( dx, 

where M (4 + A)/2. The first integral exists since If(x)/(x - A)I < 

(A - M)1 jf(x)j, while the second integral exists as a CPV integral. In gen- 
eral we shall assume that both k and f separately are in DT(N6(2)). 

We shall now investigate the convergence of the interpolatory integration rules 

for CPV integrals given by (9) and (7) for singular functions f E Md (E,; k) . The 
first thing we must assume about these rules is that they converge for functions 

belonging to some smoothness class. Thus, if k = w E GSJ and xin are the 
zeros of (3), then, by (13), it suffices that g E LD(1)nDT(N,(A)) for In(wg; A) 
to converge to I(wg; A), where 

LD(v)={f: wtj(f; 3)logv '5l1 =o(l), 50+ , v>0}, 

and similarly, for the same points xi, if an arbitrary k E DT(N(2)) satisfies 

(14), for In(kg; A) to converge to I(kg; A). For the more general case, using 
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(1 1), we require at least that f E LD(2) to insure convergence, since on the one 
hand, LD( 1) D DT(J) D LD( 1+ 7), q > 0, and on the other hand, the slowest 
rate of growth of A(Xn) is of the order of log n. This rate is achieved, for 
example, when xin are the zeros of Tn (x) or of (1 -x2) Un2 (x) , the Clenshaw- 
Curtis points. For other sets of points, Xn, we may need more smoothness in 
g. Thus, if xi are the zeros of the Legendre polynomials PI?'0)(x), then 

A(Xj) - n112, and we require that g E HI12-F for some j > 0, where 

H, := {f: Oj(f3; ) < B3", B > 0}. 

In any event, for a given k and Xn, we require a certain amount of smoothness 
in g to ensure convergence. This smoothness is a global smoothness on J in 
contrast to the local smoothness required to ensure the existence of I(kg; A)). 

If f E Md (4; k), we cannot have this global smoothness but we shall instead 
assume that f has the required smoothness in every closed subinterval A c 
(4, 1]. We can now state our convergence theorem for In(kf; A), which we 
follow by several corollaries. 

Theorem 1. Let f E Md(4; k) and assume that k and the sets Xn are such 
that In(kg; A) -* I(kg; A) for all g belonging to some smoothness class S(J) c 
C(J). Assume that f belongs to S(A) for all closed intervals A c (E, 1] and 
that, given any e > 0 and any '7 E (g, 1] we can find a ,B E (E, 71) such that 

(27) E Iwin(k; A)IF(xin) < 8 
4 <Xin <fA 

for all n sufficiently large, where F is the function given in (4). Then 

(28) In(kf;A) -I(kf; A) asn - oo. 

Proof (cf. [10, p. 152]). Let e > 0 be given. Since kF E Li(J), there exists 
l E (E, MI such that f, Ik(x)F(x)l dx < e, where M := (E + ))/2. Choose 

B E (E , 7) such that (27) holds. We then have f, Ik(x)F(x)I dx < e . Define 

now a function fE e S(J) by 

f h(x), 13<x<l, 

0, -1 <X<g, 

where h(x) is a function of smoothness class S[g,,f] such that ffE S(J) 

and Ih(x)l < BF(x) in [g, fB] for some B > 0. For example, if S(J) = H, 

we can choose h to be a linear function such that h(g) = 0 and h(/8) = 

in which case B = 1 . 
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We now have 

IIn(kf; A) - I(kf; A)I 
? IIn(k(f - ffl); A)l + IIn(kff,; A) - I(kffl; A)l + II(k(f - ffl); A)l 

? E lWin(k ; A) I(I f(Xin) I + 1if (Xin)1) + I In (k7fl;A) -I (k-f; A)lI 
<xin<?fl 

+ j (k )f(x) dx + f k(X) ffl) dx| 

? ( + B)-e + lIn(k7fl; A) -I(k7f6; A) I + (M - A)- (I + B)e 

Since ffl E S(J), In (kffl; A) -+ I(kffl; A) as n -- oo, which proves (28). 

Corollary 1.1. Let there be given a sequence of sets Xn , k E DT(N,(A)) n L1 (J) 
and f E Md(Q; k) such that the companion rules IInl(kF) -- I(IkIF), where 
F is given in (4). Assume that In(kg; A) -* I(kg; A) for all g e S(J), that 
f E S(A) for all closed intervals A c (4, 1] and that 

(29) I(kPn; A)/Pn (xin) = O(win(k)) 

for all indices i such that 4 < x < + 3 for some 3 > 0, where Pn is given 
by (8). Then (28) holds. 

Proof. By Theorem C, Z:<x in< lwiw(k)IF(xin) < e, where we can choose ,B < 
M. By (29), 

Iwin(k; A)l < Clwin(k)l/lxin -Al < C(M - A)I lwin(k)l. 

Hence, by Theorem 1, (28) holds. 

Corollary 1.2. Let w E GSJ and let xin be the zeros of (3). Assume that 
f E Md(,; w) n DT(N,(A)) and that f E LD(l) in all closed subintervals 
A c (4, 1]. Let =cos7Tu. 

(a) If , > -1, then In(wf; A) - I(wf; A) as n - oo. 
(b) If 4 = -1 and yO < I in (2), then (28) holds with k = w. 
(c) If w is the Jacobi weight function (26) and T < 1 is a positive rational 

number, then (28) holds. If T is irrational and If(x)l < B(x - ,) 8 
with u < 2 , then (28) holds for almost all ,. Here also, k = w in (28). 

Proof. Since In (w.f) is a Gauss, Radau or Lobatto rule, we have by the remarks 
following Corollary C.2 that In(wF) -* I(wF) in case (a) and In(wF) 
I(wF) in cases (b) and (c), where F is the function specified in (4). Further- 
more, the weights win (w) are the Gauss, Radau or Lobatto weights Jlin which 
are positive. Hence, it remains to show that In(wg; A) -- I(wg; A) for all 
g E LD(1) n DT(N,3(A)) in case (a) and that (29) holds in all three cases. To 
this end, we quote some results about the quantities appearing in (29) for the 
Gauss case. As in [7,9], similar results hold for the Radau and Lobatto cases. 
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From [5, (19)] we have that 

Win(w) = tin n w(xin)(l -x2)1/2 

and from [5, (17)] that 

I + x n n2 i= 1, 2 ... .- 1. 

From [4, p. 170] we have that 

1n/P, (xin ) =n_I n JUinPn- 1(Xin ) An_I An<1. 

From [5, (22)], 

I-1/2 (I -X 
2 

1/4 

and from [2], we have that qn(A) := I(pn; A) = 0(1). From these it follows 
that (29) holds, since 

II(wPn; A)/Pn (x)In () Pn (Xin) 

= O(, iW(X -1/22(1 -X2)1/4 

= Hin) if { _ -1 and Yo < 1/2. 

Furthermore, since ,cn = o(l), it follows that w,Kn(w; A) = o(l), so that 
I'(wg; A) -* I(wg; A), which completes the proof. 

We see that the case I = -1, which is a favorable case as far as convergence 
of In (wf) is concerned, is not favorable for the convergence of In (wf; il) or 
for that matter, of I (wf; A.). This is so since qn(A)/p (xin) does not tend 
to zero as quickly as gin in the neighborhood of -1 . Even though we have 
only that qn (A) = 0(1), we have in fact that qn (A) oscillates between two finite 
bounds, so that qn (A) $ o(1). Thus, for the normalized Legendre case, we have 
[14, (8.21.19)] 

qn(cos0) = (7r(2n + 1)/4nsin0)1/2cos{(n + 1/2) + 7r/4} + 0(n '), 

and similar expressions exist for the Jacobi case. 

4. CONVERGENCE RESULTS. II 

We now investigate the convergence of In+ I(kf; A) to I(kf; A), or equiva- 
lently, that of In(kfJ) to I(kfA). As indicated above, we need not restrict our 
attention to IPIR's In(kg) but can consider arbitrary PIR's In(kg), in partic- 
ular the generalized piecewise polynomial PIR's studied in [1O]. Thus, we state 
our main theorem for arbitrary PIR's. 

Theorem 2. Assume that In(kg1) -- I(kg2) for all gl E PC[J] and that 
Inl(kF) -' I(IkIF) if f E Md(4; k), where F is defined in (4). Then In(kfi) 

I(kfA). 
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Proof. If lInl(kF) -* I(lklF), then by Theorem C, Z,<xin< lKin(k)IF(Xin) < 

e. Hence, 

Z IUTin(k)Ilf(xin) - f()I/Ixin -Al < Be, 
4 <Xin <fA 

so that by Theorem C, In(kfA) -+ I(kfi). 
We observe that Ji has possible singularities at 4 and A. If these are such 

that a sequence of PIR's which ignore the singularities converges, then we can 
use such rules, but it may turn out that we will have convergence only when we 
avoid the singularities. If 4 = -1 , we can generally ignore the singularity at . 
If 4 :A -1, we may be able to ignore the singularity in some special cases but 
generally we must avoid the singularity. As for the point A, since it is always 
an interior point, we must in general avoid the singularity, although in special 
situations, we can ignore it [8]. 

Before we apply Theorem 2 to derive some results on the convergence of 
In+I(kf; A) to I(kf; A) when f E Md(4; k), we observe that we can use 
Theorems 2 and 3 and Corollaries 3 and 4 in [10] to establish conditions for the 
convergence of In (kfA) to I(kfi) when the In (kf9) are generalized piecewise 
polynomial PIR's. Here also, we ignore the singularity when 4 = -1 and avoid 
it when 4 $ -1 and for all A. We will not enter into the details here. 

We now state our first corollary. 

Corollary 2.1. Let w E A, let xin be the roots of (3) and let In(kh) be an IPIR 
that converges for all h E R[J]. If f E Md(E,; k) n H1 (N (i)) and IIn I (kF) 
I(1kIF), where F is defined in (4), then In(kf) -> I(kfi). 
Proof. In(kh) -> I(kh) for all h E R[J] implies that In(kg) -> I(kgl) if 
g E H(N ())nR[J]. 

We now introduce some notation similar to I' . Let x,n be the point in 
Xn closest to A, where, if two points are closest to A, we choose xan > A. 
Then In (wg) = In (w9g) - Tng(xan) and I (wg) := I(wg) - U g(xa7 ) = 

In*(wg) - WKng(xKnf)- 

Corollary 2.2. Let w e A and let xin be the roots of (3). Let k = w and assume 
0< b < w(x) < B for x e N,()uN6(). If feMd (Q;w) and > -1, 
then IA*(wfA) - I(wfi). If f E H(N6(A)), p > 2 , and If(x)l < B((x -4[ 
M < 2 ,for < x < 4 + , then for almost all pairs (E, A), In(wfA) - I(wfA). 
Proof. In this case, win(W) = Hin* Since 0 < b < Iw(x)I < B in N5(2) u 
N6(), xj+l,n - 

Xjn l/n and pin 1/n for all xin in N5(A) u N 
[7]. Since In(wh) is a Gauss, Radau or Lobatto rule, In(wF) = IInl(wF) 
I(jwIF) = I(wF). Furthermore, In7(wgA) -* I(wg,-) for every g. E R[J]. 
Hence In*(wfA) -* I(wfl). If the additional conditions in the corollary hold, 
then using the results in [7], we see that we can drop the prime and the asterisk 
from I'* for almost all pairs (4, A). 
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Corollary 2.3. Let w E GSJ and xin be the zeros of (3). If f E MdQ(; w) and 

,> -1, then il(wf; A) -* I(wf;)A) and if E = -1, then In+(wf;A) 
I(wf; A). 

Proof. If > -1 and A, i 4 tj, j = 1,... p, as we have always assumed, 
then there exists 3 > 0 such that 0 < b < w (x) < B for x E N,,(i) n N5 (E) . If 

= -1,we know that I,*(wf) -* I(wfA) by taking I,(w f) to be I* (wJf). 

Corollary 2.4. Let w be the Jacobi weight function (26), let x in be the zeros of 
(3) and let k E DT(N5(A)) satisfy (14). Assume that f E AId(4; k) and that k 
is continuous and of bounded variation in N() U N(A) . Then 7n (kf; 2) 
I(kf; A). If 4(A) = CoS 7rp/q, we can drop the prime (asterisk). If f E H in 

N6(2), y > 2, we can drop the asterisk for almost all A2. If Ijf(x) < B(x-)>, 
M < 2,for < x < , + , we can drop the prime for almost all . 

Proof. By Theorem 2 in [13], if x is a fixed point in (-1, 1) and j is the 
unique integer such that Xjn < X < xj+I n and k satisfies (14) and is contin- 
uous and of bounded variation in an open interval X which contains x, then 

nwin(k) --+rk(x)(1 - x2)'12 as n -+ oo, and the convergence is uniform in 
any closed interval in X containing x. This implies that win(k) ,UinI So 
that we can apply the same reasoning as used to prove Corollary 2.3 to show 
that I,f I (kf; 2) -* I(kf; A) . The other results follow from convergence re- 
sults for Gauss, Radau or Lobatto rules based on zeros of Jacobi polynomials in 
which we can ignore the singularity instead of avoiding it in the circumstances 
mentioned in the corollary. 
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